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STRUCTURAL STIFFNESS, STRENGTH AND DYNAMIC CHARACTERISTICS
OF LARGE TETRAHEDRAL SPACE TRUSS STRUCTURES
By

Martin M. Mikulas, Jr., Harold G. Bush, and Michael F, Card
- Langley Research Center

INTRODUCTION

Very large, low mass structures are expected to play an important role
in mahy of NASA's future space missions. These missions include activities
such as communications, solar power collection, and earth resource surveillance.
The results of a study on possible future space activities are presented in
reference 1 and a survey of expected requirements of large space structures is
presenteéd in reference 2.

Although specific missions are yet to be defined it is obvious that some
form of large opeh truss structures will be a strong candidate for providing
a stiff skeletal reference frame upon which on-orbit functions can be conducted.
Considerable research and engineering has gone into truss structures for earth
o) based use (see ref. 3), but very little of the technology is applicable to
structures for space use because of mass and transportation restrictions. In
reference 4 a concept is presented for obtaining high packaging densities for
transportation.

To obtain some insight into the general structural characteristics of
very large, low mass truss structures, the tetrahedral truss configuration
defined in figures 1 and 2 was choseh as an initial study model. Although
other truss geometries could be more efficient for achieving specific applica-
tion requirements, the tetrahedral truss having psuedo-isotropic elastic pro-
perties and being constructed of all identical column members is an excellent
configuration for preliminary studies.
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{ * In the present paper, simple linear plate-theory-type expressions are
{ derived for the tetrahedral truss where the individual members are “smeared
oL out" or averaged over the surface such that the truss structure is assumed to




PEL AR ChAESAILANCIS TSN PR A S

FUURANTRITT T Y Y ey e T
A S A

behave as an equivalent continuum,

These simple expressions are then used to

explore the behavior of very large truss structures subjected to loadings

anticipated-in on-orbit operations.

Mass expressions are derived for both

aluminum and graphite/epoxy tubular columns and these expressions are in turn
used to obtain mass relations for the tetrahedral truss.
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SYMBOLS

Column spacing

Total planform area of truss
Truss width

Column cross sectional area

Buckling coefficients

Plate flexural bending stiffness

Young's modulus

Frequency

A constant defined by Newton's second law
mass x acceleration)

(force =
9

Truss depth

Lamina thickness

Moment of inertia

Column length

Truss length

Applied moment

Number of columns in a truss

Axial load in column
Number et «luster joints in a truss structure

Inplane stress resultants

Column radius
Radius of curvature
Effective thickness




T Thrust
W Truss mass
W Column mass

Xo¥ Rectangular coordinates

P Mass per unit volume

€ Strain

\V Poisson's ratio

0 * Column angle defined in Sketch b
A Truss lateral deflection

o} Stress

n Thrust-to-mass ratio

TETRAHEDRAL TRUSS ANALYSIS

Truss Description

The tetrahedral truss structure considered in this paper is formed with
columns lying along the intersections of the sides of repeating tetrahedrons
connected at their bases as shown in figure 1-a and connected with additional
columns at their upper vertices as shown by the dashed lines in figure 1-b.
This arrangement <orms an upper and lower cover of triangular column networks
separated by a tetrahedron shaped core. A basic repeating element of this
structure is shown in figure 1-c where each of the 6 core members are visualized
as being split along their length into 1/2 celumns, For each repeating element
there are 3 columns in the lower cover, 3 columns in the upper cover, and half
of 6 columns in the core for a total of 9 columns per repeating element. A
photograph of a typical tetrahedron and the resulting tetrahedrai truss
structure is shown in figure 2. A view of the upper surface of the truss and

o N




ST

SRR T RR AT
A, L i

of one side is shown in sketch a.
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" UPPER SURFACE SIDE VIEW

Sketch a.- Tetrahedral truss dimensions
and coordinate system

The upper surface, which is the same as the lower surface, is a network of
columns of lendgth £ forming equilateral triangles. The depth of the
structure H is related to column length 2 by

H=\[§z (1)

and for future reference the height of each triangle a is related to column
length 2 by




Number of Columns In a Tetrahedral Truss

In evaluating various construction details of a tetrahedral truss struc-
ture it is necessary to determine the number of columns required to construct
a given size structure. As can be seen in figure 1-c there are effectively
9 columns. per repeating element. The projected planform area of each repeating
elenent is fa so that the number of columns No per unit area is

N .0 643 (2)
A %a QZ

where A is the total planform area of the truss. A log-log plot of Eg
A
as a function of column length, %, is shown in figure 3.
Number of Cluster doints in a Tetrahedral Truss

Another related item of interest in evaluating the tetrahedral truss is
the number of cluster joints per unit area required. It is seen in figure 1-c
that there are 9 columns per repeating element. Each cluster joint, however,
that connects the columhs has 9 attachment points, so that there are 2 cluster
joints per repeating element oh the averade. Thus the number of joints Nj
per unit area of truss is

N, 4

-_ﬁ%_ = 1ﬁ§ j2'2

or there are 2/9 as many cluster joints in a tetrahedral truss as there are
individual columns,

Truss Mass

The mass of the basic repeating element shown in figure 1-c is

W = QWC = 99,Acpc (3)

rep.elem.




where wc is the mass of each—column, Ac is the cross-sectional area of

each column and Pe is the density of the column material. The area of the

repeating element is 2a so the mass per unit area for the complete truss
which is the same as the mass per unit area for the repeating element is

Ap

W

-+ =9--=a (4)
Truss 1[-

Truss Stiffnesses

Basic Assumptions.~ In the present paper the tetrahedral truss is
considered to be composed of many repeating elements, and it is assumed that
the truss stiffness properties may be averaged over its surface. A1l columns
making up the truss are assumed to be pitihéd so that no local bending of
elements occurs. The upper and lower covers of the truss are 0°, +60° arrange-
ments of columnhs. With the assumption of averaged stiffness properties over
the surface, the covers have an isotropic elastic behavior. The transverse
shearing flexibility of the tetrahedron shaped core is neglected so that the
truss is idealized as a sandwich plate with isotropic face sheets and a rigid
core.

Cover Extensional Stiffness.- The extensional stiffness of the
(0°,+ 60°) array of columns of theé covers as shown in sketch a can be found by
using standard laminate theory where each of tho thrce directions of columns is
considered as one lamina. The constitutive relations for a laminate are taken
from reference 5 as

B i 7 B
Ny Ay A2 A e |
= (5)
Ny A2 Pyp Ay €y
Nyy LA"S A Pes 1 |
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where

N
Ayg = Eg; (%) ‘& 2 (6)

For equal thickness lamina, equations (6) reduce to

Mpm D (Bg) 7

k=1

where h 1is the thickness of each lamina.
For each lamina of the (0°,+ 60°) array of columns the lamina orthotropic
moduli Qij which are defined in equation (2-27) of reference 5 are

Q11h = Eﬁfc , and all other Qij = 0 (8)

The 1aminate modu: of the (0°,+ 60°) covers are found by transforming the
lamina moduli given by equations (8) using standard stiffness transformation
equations (equations (2-3) of ref. 5) and substituting into equations (7).
This results in the following constitutive relations for the covers.

pan ﬁ p— ﬂ - -y
N, 9/8 3/8 0 €,
Ny = EA, 3/8 9/8 0 ey (9)
a
N 0 0 3/8 Y
— xy-J — I xy_
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The stiffnesses in equation (9) are the same as an equivalent fsctropic sheet
with the following properties.

E,t, © Eg;_g ,and v = 1/3 (10)

Where Ee is the modulus and te is the thickness of the equivalent isotropic
sheet.

ff f it is desirable to separate the modulus Eo and the thickness t,
3 a rational approach would ke to take the lamina thickness h as

; .

s = .L

. h=- (1)
é This process gives an effective laminate thickness of

@

A

i = _c

te =3 a (12)
E

{ and an effective laminate modulus of

k»

a E

s = __9,

g Ee 3 (13)
?

k In most analyses the laminate stiffness quantity Eete tanh be used so that
g the abstraction of a separate laminate effective modulus or thickness need not
1 be made.
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Truss_Bending Stiffness,- The bending stiffness D of a sandwich plate
with thin isotropic face sheets is

2
nn—--e-Et“- 14
2(1-v°) (14)

The effective bending stiffness of the tetrahedral truss is found by substitu-
ting the values for face sheet stiffness Eete and face sheet Poisson's ratio
v from equations (10) and the value for truss depth from equation (1) into
equation (14) to yield

= )
Drruss = 7 Echc? (15)

or in terms of the column length 2

= N3
Dan'uss i; l':c‘a‘c’t (16)

For a tetrahedral truss structure with one long dimension it may be appropriate
to characterize the bending behavior as that of a beam. For that case the
bending stiffness per unit width of the truss is

EI) 4
= 1EAa (17)
(IT Truss 9 cc

where B 1is the total width of the truss. In terms of the column length ¢

E‘) =2 kA (18)
(-B_‘lruss 343 ©°¢
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Summary of Equations

As previously stated the tetrahedral truss is treated herein as a
sandwich plate with isotropic face sheets and a rigid core. For convenience
the pertinent equations are summarized below both in terms of the column
length 9 and in terms of the column spacing a.

Single Cover Extensional Stiffness

E_A 2E A
(Egte) o R Vi (19)
cover V3 2

Truss Plate Bending Stiffness

o

] N3
Drpyss = 7 Eched = =4 EAL (20)

Truss Beam Bending Stiffness

2E A_¢

EI 4 (o
= EAa-= (21)
B orruss 9 €€ 343
Truss Mass Per Unit Area
A P Ap

W W c c'c
R Truss A Covers a 2
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Cover Internal Loads

For stress analysis purposes the loadings on the covers are the average
resultant loads N N,s and N

y as shown in sketch b,
Y
M,
Prepest o
- VVVVAVA
=[S0 T
- — X
- —» I
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Sketch b.- Average resultant cover loads

In general these running loads are a function of x and y and can be related

to the individual column loads using standard laminate theory considering the
(0°,% 60°) array of columns to behave isotropically.

This procéss results in
the following expressions for individual column loads:

- 2
Pugge = 5@ (N, :1/3'ny) (23)
and ]
P0° = a (NX -7 Ny) (24)
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where a 1{s the column spacind. Although the covers behave isotropically from
a dcformation point of view, equations—(23) and (Z24) show that the loads in the
+ 60° columns dre one third less than the load in the 0° columns for equal

N, or Ny loadings. Thus, thé direction of highest unidirectional-1bading on

X
the truss structure should be lined .up with the y axis.

SOLUTIONS AND DISCUSSION

In this section several simple structural analysis problems are solved on
the tetrahedral truss to demonstrate the application of the previously developed
analysis. The problems considerad are primarily directed towards developing an
understanding of the behavior of very large space structures (e.g. planform
dimensions oh the order of a kilometer or greacer).

Tetrahedral Truss Natural Frequencies

The first free-free bending frequency of a tetrahedral truss provides a
basic insight into the vibrational characteristics of a large truss structure
in orbit. The first bending frequency is presented for .both a truss structure
of square planforn ahd for a truss structure with one long dimensions such that
it behaves as a beam.

Square Planfortn Bending Frequency.- The first bending frequency fp for
a free-free isotropic square pldate is found from referehce 6 to be

_ 14,1 N/ggo
fp 2 L ot ()

where L is the length or width of the square plate, and pt is the mass per
uhit area of the plate and a constant gg has been introduced to facilitate
changes from SI to U.S. customary units. By substituting into equation (25) for
the bending stiffness from equation (20) and mass per area from equation (22),
the first natural frequency of a tetrahedral truss with square planform is
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L
Pt 2 N e (26)

where

- 1 kg.m 1bm. ft
g = 1 LI, (3.2 )
N.sec 1bf.sec

The freguenties as obtained from this equation are plotted in figure 4
as a function of the truss planform dimension L for several values of cotumn
tength 2 . The columns are assumed to be made of graphite/epoxy material.
Although the modulus of the unidirect1ona1 graph1te/epoxy is 131 -%;

(19 x 106 psi) a nominal vatue of 1036N/m (15 x 105 psi) is -
used to account for the circtumferential wraps that are required for intreasing
local buckling loads and for improving tube handling characteristics.

It may be inferred from figure 4 that very large space structures may
have sighificantly lower frequéncies than edarth structures. For example, for
L~300m; large spate structures have frequencies of the order of .1 hz (about
an order of magnitude lower than conventional earth structures). Although the
frequency increases substantially with intreasing column length & , considera-
tions such as launch vehicle packing constraints and surface coverings provide
practical limitations on the column lengths.

Beam Bending Frequency.- The first bending frequency fb for a free-free
beam is fouhd from reference 6 to be

¢ 22237 %El

(27)
b 2'rrl.2 o
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where L is the length of the beam and pA 1{s the mass per unit lendth of the

beam., For a tetrahedral truss structure where L 1is the Tong dimension and
B 1is the width, equation (27) can be written as

22.37 ] %EL (28)

where pA/B 1is the mass per unit aréa of the truss. By substituting into
equation (28} for the bending stiffness from equation (21) and the mass per
unit area from equation (22), the first free-free natural frequency of a
tetrahedral truss with one long dimension such that it behaves as a beam is

22.37 & [9%Ee
f, = 2 (29
b 6w 1/2’: I.2 fe )

To evaluate the accturacy of the present approach an exact calculation of the
first natural frequency of a tetrahedral truss 16 bays long and 8 bays wide
was made using the NASTRAN finite element computer code. The exact frequency
as determined from the NASTRAN calculation was 2% Jlower than the frequency
obtained from equation (29).

Truss Mass Required to Carry a& Given Compression Load

The tetrahedral trusses treated in the present paper are considered to
be made up of identical $lender tubular column members. The mass and sizing
of the individual members depends, therefore, on the design of the most
heavily loaded column. Because of the benign space environment, it is not
expected that the columns will be Toaded very heavily for space applications
so that the critical design condition will be stability of the slender columns
due to the compression 1oad in the cover members. The mass strength

characteristics of efficient tubular columns are discussed in Appendix A,
The loading considered in
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this section is a uniform compressive Toading Nx as shown in Sketch c.

RN, -~
PR N3 - -~
—_— \— < NX
- \ -
— o
— - Nx
) VAVAVAVAVAVAVAVAVAV/ IDRRE

Sketeh t.- Uniform Compressive Loading on Tetrahedral Truss

For the most criticdl condition wheére the 0° columns are in the

direction of loading, the load in these individual columns P 1is found from
equation (24) to be

P= aNX (30)

The mass per unit area of a tetrahedrdl truss is fournd from equation (22) as

L e o (31)
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The mass wc of an individual columm is Aczpc so that equation (31) can be
written as

W
= 6'\/3-;% (32)

=

Truss

For the assumption that the columns are 1ightly loaded so that they are desighed
from material of minimum thickness tm , the column mass is obtained from
equation (A-9). Substituting into equation (32) yields the following expres-
sion for the truss mass in. terms of the colymn load P =

W 1243 O¢ 2/3 (P /3
A = /3 73 t s 33
Truss c/3 ¢ 3m 2) . (33)

Substituting for P from equation (30) yields the mass per unit area of a
truss in terms of the applied compression load Nx as

: W g\ 1/3 ¢ 2
" = 12 c_ 2/3,1/3 34
' R russ (EE) g/3 " (34)

R R TN TN S TR
AL S SISO

T e

g For the minimum gage design condition on the columns, the mass per unit area of
s a truss is independent of column length.

Truss Mass Required to Carry an Applied Moment

o The tetrahedral truss treated in this section has an overall length L,
% a width B and is subjected to an applied bending moment M as shown in
’ Sketch d.
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Sketch d.- Tetrahedral truss subjected to an applied moment

The average load per unit length in the covers due to the applied bending
moment is

M _ /3 M
Nx BH 42 B (35)

The load in the individual columns can be found by éubstituting for Nx from
equation (30) into equation (35) to obtain

(36)

From equation (36), for a tetrahedral truss subjected to an applied moment, the
load in the individual columns is independent of the column length. The
compression load governs the design, therefore the truss mass per unit area is

found by substituting for the column load P, from equation (36) into equation
(33) to obtain

W _ 1845372 Pc_, 2/3 (wB)!/3 -
= t (37)
R truss /3 g3 ™m o1/3
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The truss masS per unit area as obtained from equation (37) is plotted
in figure 5 as a function of the colum length ¢ for different values of
the applied moment. Results shown are for graphite/epoxy material and the
constants used in equation (37) are the same as those used in Appendix A.for
the graphite/epoxy columns. For reference the mass pér unit drea of a 5 mil
mylar film and the estimated range of mass per unit area of solar cells (see
ref, 2) are also shown in figure 5.

Lateral Deflections Due to a Moment Loading

In this section.the lateral deflection of a tetrahedral truss subjected
to a pure moment is investigated. A schematic of the moment. loading M and
the lateral deflection A are shown in Sketch .e.

Sketch e.~ Truss loading and résulting deflection

The stahdard moment curvature relation for a beam is
M= Ely" = EI % (38)

Considering thdat o = Ee and o = g?-, an expression for the upper surface strain

in the truss is found from equation (38) as

= H
€ = 3g (39)

R L ) R A ST v Ty S e Pt e
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For small deflections the centér deflection A can be related to the beam
length L dnd radius of curvature R by & parabolic expression_as.

A= 8R (40)

From.equations (39) and (40) an &xpression for the truss center deflection in
terms of the surface strain _c tan be obtained as '

2

In figure 6 the ratio of center deflection A to the truss depth H 1is plotted
as a function of the ratio of the truss length L. to the truss.depth H for
otie value of the straih ¢ . The relatively low value of strain was chosen
from Appendix A considering that space structures will be very lightly loaded.
It can be seen from figure 6 that the deflections of trusses with lengths to
depth ratios of a 100 or less are only on the order of the depth of the truss.

Lateral Deflections Due Thermal Distortions

It is 1ikely that one surface of a space structure could get significantly
hotter than the other surface due to solar heating. To investigate lateral
deflections caused by thermal gradients through the depth of the truss, the
analysis of the previous section. was extended to include temperature effects.
The results of this study are showh on figure 7. The graph is a plot of the
ratio of center deflection A to truss depth H as a function of the column
coefficient of thermal exparnsion o . Typical values are showh for the
coefficient of thermal expansion of graphite/epoxy, steel, and aluminum. A
shaded band is indicated for graphite/epoxy due to the fact that the material
could be tailored to achieve different values. The temperature differential
between the upper and lower covers of the truss was chosen as 222K (400°F),
which is about the maximum that could be expected in an earth orbit. For a
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truss structure with a length to depth ratio of 100 1t can be seen from
figure 7 that an aluminum $tructure would hdave center defléctions 5 or 6 times
the truss depth while a graphite/époxy structure would have a center deflec-
tion Tess than half of the truss depth,

Gravity Gradient Loads

In this section internal loads due to moments which are applied to the
structure to counteract gravity gradient effects dre investigated. The
rotationd] angles with respect to the orbit are shown in sketch f.

G SN R

A ALt cE A

TR T

Sketch f.- Orbital angles and structural dimensions
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The moments obtained from standard theory on gravity gradients which must be
applied to the structure to hold it at a given inclination with respect to the

orbit are

and

R (- ) swemeoy

M, = gig (15 - 1;) sin2e,cose

= .3L - 5
M3 P (11 12) sinZstme1

(42)

where R 15 the orbital radius, measured from theé center of the earth, and

k = g2 = 3.984 x 10 m3rsec? (1.407 x 10'6 £t3/sec?)

R, = 6373 km (3960 miles)
g, = 9.8 m/sec? (32.2 ft/sec’)

The moments of inertia of the -truss—structure-are.—.

I

I

I

1

W

125,

(82 + H?)

2 = —Tga— (L2 + Hz)

3

W

£

gz (2 + 8)

3

(43)

(44)
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For a truss structure where L -and.._B.._are Jarge compared with H ..

W o2
I - ’2“"1’23{3
. W2

- 1 ‘1‘2‘— (6% - L)

The maximum restoring bending moment would need to be applied to the
structure when 6, = 45° @nhd 8y = 0. Using the second of equations (42)

and (45) yields thts moment as

2

O E8R§

Using the definition for R from equation 43 yields

 Wggh, 22

2 ° 3
ngR

(47)

If it is assumed that this moment i$ applied as a distributed line moment at
the center of the truss, the load in the columns adjacent to the applied
moment can be obtained by substituting for the moment from equation (47) into
equation (36) to obtain
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2,2
- 3 WQOBQ L |

1647 g, 8°

(48)

For the case where all columns in the truss are identical the mass of a truss
in terms of the design load Pdes. and the column length £ can be found
from equation (33). Substituting for the truss mass from equation (33) and
for the earth radius from equations (43) into equation (48) yields the maximum
column load P due to gravity gradient effects as

2/3

gopctc 2 (L 3 Pdes /3
44/— 9eE 175 |Re ('ﬁ) ) (49)

A plot of the column load as obtained from equation (49) is presented
in figure 8 as a function of the truss overall length L for three values of
column length & for the worst case of a low earth orbit (LEO). The truss
structures considered in figure 8 all have columns designed to carry a com-
pressive load of a 4448N (1000 pounds). For truss structures with a length
of 1.6km or less the resultant column load from the centrally located line
moment is small compared with the design load of a 4448N. These calculations
consider only the mass of the structure and that surface covering mass if any
would have to be added to the total mass considered in equation (48).

Orbital Transfer lLoads

One concept for transferring large space structures from a low earth
orbit to geosynchronous orbit is to use very high specific impulse, ioh
propulsion engines. Although the acceleration resulting from such a propulsion
system is typically very low (see ref. 2) the loading developed must be
considered because of the fragile nature of very large space structures. To
investigate internal loads that may result from this type of propulsion system,
three different arrays of engine locations were considered. The first is an
array of engines located along the center line of the truss structure as shown
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in sketch g.
L ——]

Sketch g.- Centrally located line of ion thrust engines

The thrusting configuration shown in sketch g obviously results in a
relatively large bending moment at the center of the structure. To reduce
this bending moment a second configuration was studied where two lines of
engines were placed such that the bending moment would be a minimum. This
configuration is shown in sketch h.

L
VANNNNN]

T1/2 .586L 1/2

Sketch h.- Dual line of ion thrust engine located to minimize
bending moment '

The third configuration studied was a line of ion engines placed on the edge
of the truss structure so as to produce only inplane loadings. Such a
configuration is shown schematically ir Sketch 1.

— L —
1

T

u

/ '
U I )

Sketch i.,- Ion engines placed on the edye of the truss structure
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In each of the three previously mentioned propulsion configurations the
critical design consideration is the maximum compressive load in. cover columns.
For the configuration shown.in Sketch g the centrally Tocated Tine thrust
produces a bending moment dat the center of the truss which results in a lower
cover compressive load P in the columhs as follows:

3n W W 2
P=—5 (3 + (7) L (50)
1642 | NMstr.  Apon.str.

where n 1is the thrust to mass ratio, (%b is the mass per unit area
Str.

of the truss structure and (%) . is the mass per—unit area of the
Non.Str.

non-structural coverings or equipment which are added. The ¢comparable ex-
pression for maximum compressive column lzad which results from the thrust
configuration shown in Sketch h is given by

- W W 2
=0 EK)Str. Wy, btrJ - s

while the maximum compressive column load resulting from the thrust configura-
tion given in Sketch i is:

. A3n W W L 52
T [(K)Str.+ ®on StrJ Q (%)

In figure © a plot of the maximum compressive column load in a square
truss structure is presented as a function of the planform width L for the
three different configurations just discussed. The mass per unit area of the
truss structure used in equation (50) was taken from equation (33) for a
column design load of 4448N (1000 1bf) and a length of 18.3m (60 ft). The
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non-structural mass per unit area was taken as 4 times the structural mass
value. The thrust to mass ratio n was taken as 0.0098 Newton/ky

(.001 TEE" This value would result in a transfer time from low earth orbit

to geosynchronous orbit of about one week (see ref. 2). Considering these
design conditions it can be seen from figure 9 that for the central lateral
line load of engines the column design load of 4448N would be exceeded for a
structure about 1.6km square. For the double line lodd the columh load is
reduced to 17 percerit of the singlé 1ine load value which permits the structure
to extend to about 3.2km in extent befora the design load is exceeded. For
the edge loading configuration the resultant column loads are reduced by afi
orcer of magnitude or greater for the parameters considered which essentially
eliminates the orbital transfer load as a ¢ritical structural design condition.

CONCLUDING REMARKS

Simple expressions for the structural stiffness, strength, and dynamic
characteristics of a representative tetrahedral large space truss structure
are developed and numerically demonstrated. To obtain these expressions
properties of individual elements (columns) are averaged over the surface such
that the truss structure is assumed to be an equivalent continuum. This
approximation results in the truss structure being treated as a sandwich plate
wita a rigid core. For the structure considered in this paper the truss
covers possess a "pseudo-isotropic" behavior which results in very simple
expressions for th2 structural behavior. Although in the present paper
attention is restricted to the tetrahedral truss structure with identical
individual elements (columns), the approach can be used for most planar truss
structures formed from a series of many repeating elements.

To understand the characteristics that very large space might possess,
the simple expressions developed in this paper are used to study the behavior
of truss structures subjected to conditions anticipated in oh-orbit operations.
The primary material system considered is graphite/epoxy. The studies include
natural vibration frequencies, truss mass required to carry representative




27

loadings, truss deflections due to meéchanical and thermal loadings, and
internal loads resultirg from gravity gradient and orbital transfer considera-
tions, Observations based.on these 1imited studies indicate the following:

. 1. The global behavior of the-tetrahedral truss structure can be
atcurately determined using the equivalent tontinuum approach .developed herein.

2. The first natural frequencies of very large space structures can be
an order of magnitude lower than earth-based structures.

3. Internal column loads due to anticipated 1:idings in space are very
Tow,

4, Allowable lateral deflections of very large weight-effieient
tetrahedral truss structures are only on the order.of the depth of the truss..

5. The large tetrahedral truss structures considered herein have a
relatively low mass per unit area (about kg/m (.05 1bm/ft2)).

The analysis procedure developed in this paper provides a simple metho-
dology for the preliminary assessment of large space structures for various
applications. The tetrahedral truss considered herein provides a baséline
desidgn against which other structural arrangements can be compared. It is
estimated, however, for applications that require the open truss structure to
be covered with a surfacg, the mass of the surface coverings could be as
great or greater than the mass of the truss. A logical extension of the present
work, therefore, is to include the mass and stiffness of the coverings so that
a proper evaluation of such cases could be made.
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APPENDIX A
MASS OF TUBULAR COLUMNS

In.this appendix the masses of aluminum and graphite/epoxy tubular
columns required to carry a given compressivé load are presented. Reduction
factors are applied to the local buckling and Euler buckling loads and
minimum gage wall thicknesses are taken intd account.

Aluminum Columns

A schematic of .the column ¢onsidered and pertinent dimensions are shown
m-SkE-tCh--A:- a .

] ~—
-]

Ac = 2mrt

.3
Ic = r-t /e
We = pcA? l

—_—

Sketch A-a.- Columh details
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The column has a cross sectional.area Ac , a moment of inertia Ic' a mass
wc and is loaded with a compressive load P. Theé Euler buckling load for a
column is

PEuter = =2 (A-1)

and the corresponding stress is

_ PEu1er _ canr2 (A-2)

G = =
Euler.. AC 22‘2

where ¢ 1is 1 for a perfect column pinned at both ends. The local wall
buckling stress for a thin walled cylinder is

= Et
%ocal . &1 7+ (A-3)

where ¢4 is 0.6 for a perfect cylinder. The stress due to the applied
compressive load is

- P ‘ -
0App. - 2mrt (A-4)

Buckling Critical Columns.- For a minimum-weight column it is assumed
that the stresses from equations (A-2), (A-3), and (A-4) are all equal. By
eliminating r and t an expression for the buckling stress o, can be
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obtained_as..follows: ..
2
3 cc,mEP
o o a =0 )
Euler “Tocal "App. b = ——p— (A-5
4s )
W
Now considering that o, = P/A. and A_ = "BEE an expression for the mass
. c
of a column wc can be found from equation (A-5) as
1/3 »
=4 ¢ p2/3 ,5/3
wc <cc11r> -——27—E 3 p ) (A-6)

3

By dividing both sides of equation (A-6) by ¢~ the structural index form for

the mass of a column is obtained as

W 173 »p 2/3
<[4 < _ [P (A-7)
3 (?fl“) c273 ( 7 )

mass shape material loading

parameter factor parameter index

This form of the equation permits the mass parameter to be plotted as a
function. of the loading index independent of tube dimensions.

Minimum Gage Thickness Constrained Columhs.- For small values of the
compressive loading, P, the thickness of material required to carry the load
becomes very small and in fact can be less than the practical minimum gage
for the material being used. For this case, local buckling is no longer an
active constraint and only Euler buckling need be considered. By eliminating
r an expression for the buckling stress can be obtained as follows:
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2
o o 2 3 CEP
Euler "App.© = (o) = Sy (A-8)
b min.gage 8¢°t

Proceeding as was done in obtaining equation (A-6) an expression for the mass
of a column with a minimum .gage thicknéss constraint tm is found as.

173 o
_ .8 2/3 .1/3 ,5/3
(wc)m"‘gélge = (3 E%73 t /3 p 13, (A-9)

In a structural index form similar to equation (A-7), the above equation
becomes

W 1/3 o t \2/3 1/3
c _[(8 m p
(23) ‘ ‘(E) k%73 ( z) ( zz) (A-10)
min.gage

For this case with the minimum gage thicknéss constraint the mass parameter
depends on the thickness to length ratio t/¢ as well as on the loading
index.

Results and Discussion.- In this section numerical results are presented
for aluminum tubes to demonstrate the application of the previously developed
equations. The constants used in this study are as follows:

E_ = 68.9 6GN/m® (10 x 10%psi)
¢ (A-11)

e = 2767 kg/m> (.1 1bm/in’)

c=.9, Cy = .36
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The valuas of the buckling constants ¢ and ¢, are chosen to take account

_ of buckling load reductions due to imperfections.

. The masses of aluminum columns as determined from equations (A-7) and
(A-10) for the values given in equations (A-11) are plotted in structural

: index form in figure 10. The minimum gage thickness for aluminum was chosen

: as tm = ,381 mm (.015 inches). The light Tines are the governing minimum

- gage masses of 1ightly loaded columns for the lengths indicated on the

figure. The heavy line is the mass of a column when the l6ads are high enough
that the minimum thickness is exceeded.

The materidl strains corresponding to the masses and loads of figure 10
are presented in figure 11. The strain in aluminum corresponding to a yield
stress of 275.8 MP, (40,000 psi) is .004. It can be seen that for most of the
16ad range considered in figure 11 the strains are well below this value. In
fact for very low loads the.strains_are two orders of magnitude lower than the
material yield strain.

Graphi te/Epoxy. Columns

The graphite/epoxy columns considered in this section have the same
overall dimensions as showti in sketch A-a. The tube wall, however, is
composed of longitudinal (0°) plies with circumferentially (90°) wrapped plies
6n the inside and outside to improve local buckling and handling characteristics.
As was the case with the aluminum columns, for lightly loaded graphite/epoxy
columns local skin buckling is not a constraint so that only Euler buckling
} governs the design. The mass of such minimum gage designed graphite/epoxy
i' columns is given by equation (A-9) where t, is the total thickness of
i' minimum gage wall laminate considered and E 1is the corresponding modulus in
the longitudinal direction. For higher loading conditions where local
buckling of the column wall must be considered the orthotropic nature of the
3 wall properties precludes obtaining a simple closed form mass equation as was
o done previously for isotropic columns. In the present study the local wall
buckling was treated using the standard orthotropic cylinder buckling analysis
from reference 7 with the same knockdowh factor as was used in a previous
section for isotropic columns. The Euler buckling was treated as in the

,'
;.
:
4
b
.
i
¢
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¢
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previous section with the same knockdown factor. These buckling constraints

along with minimum Tamina thickness constraints were coded using a nonlinear

mathematical programing minimization technique such as in referetice 8 to
- obtain minimum mass column proportions for the heavily loaded range.
&. Results and Discussion.- Results for the mass of graphite/époxy columns
: as obtained from the approach discussed in the previous section are presented
in structural index form in figure 12.

The lamina material properties and minimum thicknesses used in this

study are as follows.

| Eyy = 131 aR/n? (19.0 x 10% 1bf/in?)
] Eyy = 10.9 GN/n® (1.58 x 10° 1bf/in?)
; 6y, = 6.41 Gv/r (0.93 x 10° 1bf/in?)
: vip = 0.32

] b, = 1522 Ka/m> (0.055 1bf/in’)

-

too > .42 mm (.0165 in}

tgpe 2 .076 mm (.003 in)

tm > .57 mm (.0225 in)

b
b
8

E'\

by

4

.,
-
N

%
X

As was the cdse for the aluminum columns the light lines represent lightly
loaded minimum gage thickness designs while the heavier lines represent
heavily loaded designs constrained by local wall buckling. The smooth

f transition between the minimum gage thitkness and the heavily loaded portions
L of the curve is due to the fact that the thicknesses of the 0° plies and the

ﬁ 90° plies are permitted to vary independently. Comparison of figures 10 and
s 12 indicates that in the 1ightly loaded portion the graphite/epoxy columns

_ ‘ are about 40% less in mass than the corresponding aluminum columns fov the

ﬁ minimum gage thicknesses used. The strains in the graphite/epoxy columns

3 - corresponding to the masses and loads of figure 12 are presented in figure 13.
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comparison of the strains at comparable 1oad Tevels from figure 13 and from
11 shows that minimum mass graphite/epoxy columns are twice as stiff ds
minimum mass aluminum columns in the local buckling critical range and are
60% stiffer than minimum mass aluminum columns in the minimum gage thickness

range.
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Figure 3.- Number of columns per square kilometer in a tetrahedral truss

as a function of column length.
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Figure 8.- Maximum load in columns due to gravity gradient restoring moment.
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